Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402197, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682612

RESUMO

The conjugation of terminal ammonium salt groups with perovskite surfaces is a frequently employed technique that aims to enhance the overall performance of perovskite materials, encompassing both bulk and surface properties. Particularly, it exhibits heightened efficacy when applied to surface modification, due to its ability to mitigate defect accumulation and facilitate facile binding with the receptive sites inherent to the perovskite structure. However, the interaction of the bulk ammonium group with PbI2 has the potential to form a low-dimensional phase of perovskite, which may obstruct carrier extraction at the interface. Therefore, the surface passivators (MeO-PFACl) are designed through intramolecular potential manipulation. The combinations of the electron-donating methoxy group and π-π conjugation of the phenyl ring reduce the local potential at the reactive site of formamidinium group, making it less likely to form a low-dimension phase with perovskite. This surface passivation strategy effectively suppresses the surface nonradiative recombination and promotes the interface carrier extraction. The devices treated with MeO-PFACl have demonstrated exceptional performance, achieving a peak power conversion efficiency (PCE) of 25.88%, with an average PCE of 25.37%. These works offer a novel principle for enhancing both the efficiency and stability of PSCs using ammonium-incorporated molecules without the induction of an additional phase layer.

2.
Adv Sci (Weinh) ; 11(12): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225755

RESUMO

The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers. In this study, the harnessing of excess energies from hot-carriers is successfully demonstrated and a world-record carrier diffusion length of 15 µm is observed for the first time in colloidal systems, surpassing existing hot-carrier materials by more than tenfold. The observed phenomenon is attributed to the specifically designed honeycomb-like topological structures in a HgTe CQD superlattice, with its long-range periodicity confirmed by High-Resolution Transmission Electron Microscopy(HR-TEM), Selected Area Electron Diffraction(SAED) patterns, and low-angle X-ray diffraction (XRD). In such a superlattice, nonlocal hot carrier transport is supported by three unique physical properties: the wavelength-independent responsivity, linear output characteristics and microsecond fast photoresponse. These findings underscore the potential of HgTe CQD superlattices as a feasible approach for efficient hot carrier collection, thereby paving the way for practical applications in highly sensitive photodetection and solar energy harvesting.

3.
ACS Omega ; 8(22): 19137-19144, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305230

RESUMO

The very long wave infrared (VLWIR) is an electromagnetic wave with a wavelength range of 15-30 µm, which plays an important role in missile defense and weather monitoring. This paper briefly introduces the development of intraband absorption of colloidal quantum dots (CQDs) and investigates the possibility of using CQDs to produce VLWIR detectors. We calculated the detectivity of CQDs for VLWIR. The results show that the detectivity is affected by parameters such as quantum dot size, temperature, electron relaxation time, and distance between quantum dots. The theoretical derivation results, combined with the current development status, show that the detection of VLWIR by CQDs is still in the theoretical stage.

4.
Dyes Pigm ; 2102023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643871

RESUMO

Squaraine Figure Eight (SF8) dyes are a unique class of deep-red fluorescent dyes with self-threaded molecular architecture that provides structural rigidity while simultaneously encapsulating and protecting the emissive fluorochrome. Previous cell microscopy and bulk phase studies of SF8 dyes indicated order of magnitude enhancements in photostability over conventional pentamethine cyanine dyes such as Cy5. Studies conducted at the single molecule level now reveal that these ensemble level enhancements carry over to the single molecule level in terms of enhanced emission quantum yields, longer times to photobleaching, and enhanced total photon yields. When compared to Cy5, the SF8-based dye SF8(D4)2 possesses a three-fold larger single molecule emission quantum yield, exhibits order of magnitude longer average times before photobleaching, and exhibits twenty times larger photon yields. Additional features such as water solubility, fluorochrome encapsulation to protect it against nucleophilic attack, and selective biomarker targeting capability make SF8-based dyes promising candidates for biological labeling and microscopy applications and single molecule tracking.

5.
ACS Appl Mater Interfaces ; 14(25): 28826-28833, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35713617

RESUMO

Defect accumulation and nonradiative recombination at the interface of the electron-transport layer (ETL) and the photosensitive layer are inevitable obstacles to efficient and stable perovskite solar cells (PSCs). Herein, we reported a dual-effect interface modification strategy that employs potassium tetrafluoroborate (KBF4) molecules for the simultaneous passivation of the SnO2/perovskite interface and perovskite grain boundaries. The introduced highly electronegative BF4- enriched at the SnO2 surface and the chemical bond interaction between them can effectively reduce the hydroxyl (-OH) group defects on the surface of SnO2, improve electron mobility, and reduce nonradiative recombination. Meanwhile, partial K+ diffuses into the grain boundaries, causing the halogen ions to be uniformly distributed in the perovskite film and resulting in better crystallinity. Therefore, the performance of the experimental device was improved from 20.34 to 22.90% compared with the reference device, with a high electrical performance (JSC = 25.1 mA cm-2, VOC = 1.137 V). In particular, the unencapsulated target PSCs retained 85% of their original PCE after aging for 1000 h under ambient conditions (70 ± 10% RH) in the dark.

6.
ACS Appl Mater Interfaces ; 14(17): 19614-19622, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467824

RESUMO

All-inorganic CsPbI3 perovskite solar cells (PSCs) are becoming desirable for their excellent photovoltaic ability and adjustable crystal structure distortion. However, the unsatisfactory crystallization of the perovskite phase is unavoidable and leads to challenges on the road to the development of high-quality CsPbI3 perovskite films. Here, we reported the intermediate-phase-modified crystallization (IPMC) method, which introduces pyrrolidine hydroiodide (PI) before the formation of the perovskite phase. The hydrogen bonding, which originates from the interaction between the -NH in PI and the dimethylammonium iodide (DMAI) from the precursor solution, improved the crystallization conditions and further prompted the transition from the DMAPbI3 phase to CsPbI3 perovskite phase. The application of the IPMC method not only decreased the trap density but also changed the energy alignment for better separation of electron-hole pairs. As a result, the devices based on the PI-CsPbI3 perovskite films reached an efficiency of 18.72% and maintained 85% of their initial PCE after 1000 h of being stored in an ambient environment (∼25% RH, 25 °C). This work stimulates inspiration on how to conveniently fabricate high-quality perovskite films in industry.

7.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062451

RESUMO

It is challenging to obtain wafer-scaled aligned films for completely exploiting the promising properties of semiconducting single-walled carbon nanotubes (s-SWCNTs). Aligned s-SWCNTs with a large area can be obtained by combining water evaporation and slow withdrawal-induced self-assembly in a dip-coating process. Moreover, the tunability of deposition morphology parameters such as stripe width and spacing is examined. The polarized Raman results show that s-SWCNTs can be aligned in ±8.6°. The derived two terminal photodetector shows both a high negative responsivity of 41 A/W at 520 nm and high polarization sensitivity. Our results indicate that aligned films with a large area may be useful to electronics- and optoelectronics-related applications.

8.
J Phys Chem Lett ; 12(16): 4024-4031, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33880921

RESUMO

Accurate measurements of semiconductor nanocrystal (NC) emission quantum yields (QYs) are critical to condensed phase optical refrigeration. Of particular relevance to measuring NC QYs is a longstanding debate as to whether an excitation energy-dependent (EED) QY exists. Various reports indicate existence of NC EED QYs, suggesting that the phenomenon is linked to specific ensemble properties. We therefore investigate here the existence of EED QYs in two NC systems (CsPbBr3 and CdSe) that are possible candidates for use in optical refrigeration. The influence of NC size, size-distribution, surface ligand, and as-made emission QYs are investigated. Existence of EED QYs is assessed using two approaches (an absolute approach using an integrating sphere and a relative approach involving excitation spectroscopy). Altogether, our results show no evidence of EED QYs across samples. This suggests that parameters beyond those mentioned above are responsible for observations of NC EED QYs.

9.
ACS Appl Mater Interfaces ; 12(31): 35598-35605, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32638584

RESUMO

Cesium lead halide perovskite nanocrystals (PNCs), while possessing facile chemical synthesis routes and high photoluminescence (PL) properties, are still challenged by issues of instability and degradation. Although atomic layer deposition (ALD) of metal oxides has been one of the common encapsulation approaches for longer term stability, its application inevitably resulted in severe loss of emission efficiency and at times partial loss of structural integrity of perovskites, creating a bottleneck in its practical viability. We demonstrate a nondestructive modified gas-phase technique with codeposition of both precursors trimethylaluminum and water to dramatically enhance the PL emission in zero-dimensional (0D) Cs4PbBr6 PNCs via alumina encapsulation. X-ray photoelectron spectroscopy analysis of Cs4PbBr6 films reveals the alumina deposition to be accompanied by elemental composition changes, particularly by the reduction of the excessive cesium content. Ab initio density functional theory simulations further unfold that the presence of excess Cs on the surface of PNCs leads to decomposition of structural [PbBr6]4- octahedra in the 0D perovskite lattice, which can be prevented in the presence of added hydroxyl groups. Our study thus unveils the pivotal role of the PNC surface composition and treatment in the process of its interaction with metal oxide precursors to control the PL properties as well as the stability of PNCs, providing an unprecedented way to use the conventional ALD technique for their successful integration into optoelectronic and photonic devices with improved properties.

10.
J Phys Chem Lett ; 10(21): 6780-6787, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31613634

RESUMO

We demonstrate enhancement of the photoluminescence (PL) properties of individual zero-dimensional (0D) Cs4PbBr6 perovskite nanocrystals (PNCs) upon encapsulation by alumina using an appropriately modified atomic layer deposition method. In addition to the increased PL intensity and improved long-term stability of encapsulated PNCs, our single-particle studies reveal substantial changes in the PL blinking statistics and the persistent appearance of the long-lived, "delayed" PL components. The blinking patterns exhibit a modification from the fast switching between fluorescent ON and OFF states found in bare PNCs to a behavior with longer ON states and more isolated OFF states in alumina-encapsulated PNCs. Controlled exposure of 0D nanocrystals to moisture suggests that the observed PL lifetime changes may be related to water-induced "reservoir" states that allow for longer-lived charge storage with subsequent back-feeding into the emissive states. Viable encapsulation of PNCs with metal oxides that can preserve and even enhance their PL properties can be utilized in the fabrication of extended structures on their basis for optoelectronic and photonic applications.

11.
Nat Commun ; 10(1): 2930, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266944

RESUMO

Cesium-based perovskite nanocrystals (PNCs) possess alluring optical and electronic properties via compositional and structural versatility, tunable bandgap, high photoluminescence quantum yield and facile chemical synthesis. Despite the recent progress, origins of the photoluminescence emission in various types of PNCs remains unclear. Here, we study the photon emission from individual three-dimensional and zero-dimensional cesium lead bromide PNCs. Using photon antibunching and lifetime measurements, we demonstrate that emission statistics of both type of PNCs are akin to individual molecular fluorophores, rather than traditional semiconductor quantum dots. Aided by density functional modelling, we provide compelling evidence that green emission in zero-dimensional PNCs stems from exciton recombination at bromide vacancy centres within lead-halide octahedra, unrelated to external confinement. These findings provide key information about the nature of defect formation and the origin of emission in cesium lead halide perovskite materials, which foster their utilization in the emerging optoelectronic applications.

12.
Sensors (Basel) ; 19(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060347

RESUMO

It is a daunting challenge to measure the concentration of each component in natural gas, because different components in mixed gas have cross-sensitivity for a single sensor. We have developed a mixed gas identification device based on a neural network algorithm, which can be used for the online detection of natural gas. The neural network technology is used to eliminate the cross-sensitivity of mixed gases to each sensor, in order to accurately recognize the concentrations of methane, ethane and propane, respectively. The neural network algorithm is implemented by a Field-Programmable Gate Array (FPGA) in the device, which has the advantages of small size and fast response. FPGAs take advantage of parallel computing and greatly speed up the computational process of neural networks. Within the range of 0-100% of methane, the test error for methane and heavy alkanes such as ethane and propane is less than 0.5%, and the response speed is several seconds.

13.
Nanoscale ; 9(48): 19398-19407, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29210416

RESUMO

Observation of energy transfer (ET) from multiexcitonic (MX) complexes in nanocrystal quantum dots (NQDs) has been severely restricted due to efficient nonradiative Auger recombination leading to very low MX emission quantum yields. Here we employed "giant" CdSe/CdS NQDs with suppressed Auger recombination to study ET of biexcitons (BX) and charged excitons (trions) into Si substrate. Photoluminescence (PL) measurements of (sub)monolayers of gNQDs controllably assembled on various interacting surfaces and augmented by single gNQD's imaging reveal appearance of BX spectral signatures and progressive acceleration of PL lifetimes of all excitonic species on Si substrates. From statistical analysis of a large number of PL lifetime traces, representative exciton, trion and BX ET efficiencies are measured as ∼75%, 55% and 45% respectively. Detailed analysis of the MX's radiative rates demonstrate the crucial role of the radiative (waveguide) ET in maintaining high overall transfer efficiency despite the prevalent Auger recombination. Our observations point towards practical utilization of MX-bearing nanocrystals in future optoelectronics architectures.

14.
Sci Rep ; 7: 41967, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155920

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...